Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Toxicol Appl Pharmacol ; 404: 115182, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-694488

ABSTRACT

Due to the pandemic of coronavirus disease 2019, the use of disinfectants is rapidly increasing worldwide. Didecyldimethylammonium chloride (DDAC) is an EPA-registered disinfectant, it was also a component in humidifier disinfectants that had caused idiopathic pulmonary diseases in Korea. In this study, we identified the possible pulmonary toxic response and mechanism using human bronchial epithelial (BEAS-2B) cells and mice. First, cell viability decreased sharply at a 4 µg/mL of concentration. The volume of intracellular organelles and the ROS level reduced, leading to the formation of apoptotic bodies and an increase of the LDH release. Secretion of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) and matrix metalloproteinase-1 also significantly increased. More importantly, lamellar body-like structures were formed in both the cells and mice exposed to DDAC, and the expression of both the indicator proteins for lamellar body (ABCA3 and Rab11a) and surfactant proteins (A, B, and D) was clearly enhanced. In addition, chronic fibrotic pulmonary lesions were notably observed in mice instilled twice (weekly) with DDAC (500 µg), ultimately resulting in death. Taken together, we suggest that disruption of pulmonary surfactant homeostasis may contribute to DDAC-induced cell death and subsequent pathophysiology and that the formation of lamellar body-like structures may play a role as the trigger. In addition, we propose that the cause of sudden death of mice exposed to DDAC should be clearly elucidated for the safe application of DDAC.


Subject(s)
Betacoronavirus/drug effects , Cell Survival/drug effects , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Quaternary Ammonium Compounds/toxicity , Animals , Apoptosis/drug effects , COVID-19 , Cell Line , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Mice, Inbred ICR , Quaternary Ammonium Compounds/administration & dosage , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL